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USER DOCUMENTATION FOR SENSPVODE, A VARIANT OF PVODE
FOR SENSITIVITY ANALYSIS*

STEVEN L. LEE , ALAN C. HINDMARSH AND PETER N. BROWNf

1. Introduction. SensPVODE and PVODE [3] are general-purpose ordinary differen-
tial equation (ODE) solvers for stiff and nonstiff initial-value problems. SensPVODE, how-
ever, is a variant of PVODE that includes options for simultaneously computing the ODE
solution together with its first-order sensitivity coefficients with respect to model parameters.
Both codes are written in ANSI-standard C for portability and use MPI (Message-Passing
Interface [6]) to achieve parallelism. Furthermore, these codes are based on CVODE [4, 5]
and are intended for a distributed memory SPMD (Single Program Multiple Data) environ-
ment in which all vectors are identically partitioned across processors. To implement this
SPMD model, SensPVODE and PVODE use special versions of the modules contained in
CVODE. For example, the revised NVECTOR vector module is designed to help the user assign
a continuous segment of a given vector to each of the processors for parallel computation.
The idea is for each processor to solve a certain fixed subset of the ODEs that describe the
model problem and the first-order sensitivity coefficients of the solution.

SensPVODE includes all of the essential numerical methods contained in PVODE: back-
ward differentiation formulas (BDF) or Adams-Moulton formulas for time integration; Inex-
act Newton methods or functional iteration for solving nonlinear equations; Krylov subspace
methods (i.e., GMRES [2]) and preconditioning modules for solving linear systems. The
linear solver and preconditioning modules allow for other Krylov methods to be easily in-
cluded and for user-supplied preconditioners to be added. SensPVODE also retains the use
of matrix-free methods [1] for approximating preconditioned matrix-vector products. As in
PVODE, this approach obtains matrix-vector products within GMRES without explicitly
computing and/or storing the linear system matrix. In contrast to PVODE, the current ver-
sion of SensPVODE does not contain a direct method for solving linear systems. However,
in a future release, the PVODE diagonal linear solver module CVDIAG may be added so that
the two packages have identical linear solver capabilities. SensPVODE was developed and
tested on a cluster of Sun-SPARC workstations.

The remainder of this document is organized as follows: Section 2 sets the mathematical
notation and summarizes the basic approach to sensitivity analysis. Section 3 summarizes
the organization of the SensPVODE solver, while Section 4 summarizes its usage. Section 5
describes a set of Fortran/C interface routines. Section 6 describes two example problems.
Finally, Section 7 discusses the availability of SensPVODE.

2. Mathematical Considerations. In many complex, large-scale, computational sim-
ulations, the governing equations can often be spatially discretized and then numerically
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solved as a system of ODEs. Typically, these equations contain parameter values (e.g.,
chemical reaction rates) that are not precisely known. In addition to numerically solving
the ODEs, it may be desirable to determine the sensitivity of the results with respect to
the model parameters. Such sensitivity information is useful because it indicates which
parameters are most influential in affecting the behavior of the simulation.

SensPVODE is a variant of PVODE that computes the first-order sensitivity of the ODE
solution with respect to some or all of its model parameters. When computing sensitivities
in this context, one is interested in solving the ODE system

(1) y'(t) = f(t,y,p), y(to) =%(p), y€RY, peR™,

where the solution vector y(¢) depends upon an additional vector of parameters p. The
sensitivities are defined as

Sz(t): (9;0 ’izlv"'vma
i

and the equations for the sensitivities are obtained by differentiating the original ODE with
respect to each component p; of p. Thus, we have

®) 50 =L+ 3L s - 220
The initial sensitivity vector s;(fo) is either all zeros (if p; occurs only in f), or has nonzeros
according to how yo(p) depends on p;. Given this preliminary formulation, we remark that
PVODE can now be used to solve the initial-value problem for the sensitivities (2) in tandem
with the ODEs for the model problem (1).

Several observations motivate a modification of the sensitivity ODEs (2) just derived.
The first is the fact that the units for the ODE solution y(¢) and the sensitivity vectors s;(t)
do not match. This mismatch in units can lead to scaling problems when attempting to
numerically integrate this combined system of ODEs. In particular, we note that the sensi-
tivity vectors will have units of [y]/[p;]. One remedy is to scale each sensitivity vector s;(t)
by P;, a nonzero constant that is dimensionally consistent with p;. By doing so, we obtain
the scaled sensitivity vector

(3) w;(t) = P;si(t),

where, typically, p; = p;. By differentiating these scaled vectors with respect to time, we
obtain the scaled sensitivity ODEs
of _of
50+ 35) =S+

) w0 =p(0 =7, (30 + 35} = S0 45,5

SensPVODE carries out the time integration of the combined system, (1) and (4), by
viewing it as an ODE system of size N(m + 1). By defining

,1=1,---,m.
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the combined system is simply
Y(t)=F(t,Y.p), Y(t)="Yo(p)

For many large-scale applications, implicit time integration methods are necessary. Sens-
PVODE uses backward differentiation formulas (BDFs) of order 1 through 5 to approximate
Y'(t). The first-order case is the backward Euler method, and in that case this approach
yields the nonlinear system

(5) 0= G(Yn+1) = Yn+1 — hF(tn—f—l) Yn-l—l:p) - Yn

where h = t,,1 — t, is the current stepsize. Due to the form of F, the Jacobian matrix
0G/0Y has the lower block triangular structure
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where
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Higher-order BDFs also yield Jacobian matrices 0G/0Y with this same lower block triangular
structure, and with identical block-diagonal entries of the form I — hf3,J. SensPVODE
solves the nonlinear systems G(Y,, ;1) = 0 by using the simultaneous corrector method [7],
a technique in which the Newton iteration uses the block-diagonal portion of 0G/JY as the
linear system matrix. This results in a decoupling that allows I —hfyJ to be used repeatedly
in solving the (m+ 1) linear systems that arise: one linear system for the Newton correction
to the ODE variables; and m linear systems for the corrections to the m scaled sensitivity
vectors. Because all of the Jacobian matrices are identical, the latter systems are solved using
the same preconditioner and/or linear system solver that were specified for the original ODE
problem (1). In particular, the SPGMR (scaled, preconditioned GMRES) method is used
when solving stiff initial-value problems via BDF methods.

The integrator computes an estimate F,, of the local error at each time step, and strives
to satisfy the inequality

(6) 1 Enll s <1 -

Here the weighted root-mean-square (rms) norm is defined by
N(m+1) 1 , 1/2

(7) 1Bl s, = Z; Nim+1) (WiEn;)

where E,,; denotes the ¢th component of E,, and the ¢th component of the weight vector is

1
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This permits an arbitrary combination of relative and absolute error control. The user-
specified relative error tolerance is the scalar RTOL; the user-specified absolute error tolerance
is ATOL, which may be a scalar or a vector. The value for RTOL indicates the number of
digits of relative accuracy for a single time step. The specified value for ATOL; indicates the
values of the corresponding component of the solution vector which may be thought of as
being zero, or at the noise level. In particular, if we set ATOL; = RTOL X FLOOR,; then FLOOR;
represents the floor value for the ith component of the solution. The magnitude of FLOOR,; is
the value for which there is a crossover from relative error control to absolute error control.
In the vector case of tolerances for the sensitivity vectors, a typical default is to use the
same ATOL as for the ODE variables. Since the tolerances define the allowed error per step,
they should be chosen conservatively. Experience indicates that a conservative choice yields
a more economical solution than error tolerances that are too large.

For estimating the scaled sensitivity derivatives wj(¢) in (4), SensPVODE has an option
that applies centered differences to each term separately:

(%) dy 26,
and

8 t, y +(5i_i6i — t, y —5,-_Z-e,-
(10) }_jifwf(yp piei) — f(t,y,p — 0:D )_

i 26;

As is typical for finite differences, the proper choice of perturbations d, and J; is a delicate
matter. SensPVODE uses a d, and J; that takes into account several problem-related fea-
tures; namely, the relative ODE error tolerance RTOL, the machine unit roundoff €machine,
and the weighted root-mean-square norm of the scaled sensitivity w;. We then define

1

max(1/6;, |[willrms,w)

(11) 6 = \/maX(RTOL, €machine) and &, =

The terms €pachine and 1/d; are included as divide-by-zero safeguards in case RTOL = 0 or
|lw;]| = 0. Roughly speaking (i.e., if the safeguard terms are ignored), d; gives a /RTOL
relative perturbation to parameter ¢, and d, gives a unit weighted rms norm perturbation
to y. Of course, the main drawback of this approach is that it requires four evaluations of
f(t,y,p)-

Another technique for estimating the scaled sensitivity derivatives via centered differ-
ences is

(12) w;(t) = oy T Pig, ~ 55

K3

in which
d = min(6;, 0y)-

If 6; = 0y, a Taylor series analysis shows that the sum of (9)-(10) and (12) are equivalent
to within O(6%). However, the latter approach is half as costly since it only requires two
4



evaluations of f(¢,y,p). To take advantage of this savings, it may also be desirable to use the
latter formula when 6; ~ ¢,. SensPVODE accommodates this possibility by allowing the user
to specify a threshold parameter pmax. In particular, if §; and ¢, are within a factor of |pmax|
of each other then (12) is used to estimate the scaled sensitivity derivatives. Otherwise, the
sum of (9)—(10) is used since ¢; and 4, differ by a relatively large amount and the use of
separate perturbations is prudent.

These procedures for choosing the perturbations (9;, é,, ¢) and switching (pmax) between
centered difference formulas have also been implemented for first-order, forward difference
formulas as well. In the latter case, forward differences can be applied to Jw; and ﬁig—li
separately or the single forward difference

(13) w(t) = ﬂwi -l-]‘?iﬁ ~ Jy +0wi,p + 0piei) — (L. y,p)
oy Op; )

can be used. In SensPVODE, the default value of py.x = 0 indicates the use of the centered

difference (12) exclusively. Otherwise, the magnitude of pn.x and its sign (positive or neg-

ative) indicates whether this switching is done with regard to (centered or forward) finite

differences, respectively.

In contrast to the above notation used in describing the mathematical details, the sec-
tions that follow use new variable names in explaining the organization, usage, and example
programs of SensPVODE. For convenient reference, we define these names as follows:

e f is the name of the user-supplied function that computes y'(t) = f(¢,y,p)
e Ny is the number of ODEs contained in f

e Np is the number of parameters contained in p

o

[ J

Ns is the number of sensitivity vectors to be computed
Ntotal is the total number of ODEs to be solved by SensPVODE; usually
Ntotal = Ny * (1 + Ns)
e u is the vector of length Ntotal that contains the Ny ODE variables and Ns scaled
sensitivity vectors
e rhomax is the finite difference threshold parameter ppax

3. Code Organization. One way to visualize SensPVODE is to think of the code as
being organized in layers, as shown in Fig. 1. The user’s main program resides at the top
level. The main program creates the required data structures, makes various initializations,
defines the ODE function f, defines the preconditioner setup and solve routines (if any),
makes calls to the SensCVSPGMR and/or SENSITIVITY modules, and calls the CVODE module
for the solution of the problem. The main program also manages input/output.

At the second level, the SENSITIVITY module contains several user-callable routines:
SensCVodeMalloc, for memory allocation and basic initializations related to sensitivity anal-
ysis; SensCVReInit for reinitializing SensPVODE to solve a new sensitivity analysis problem
of the same size as the one previously solved; SensCVodeFree, for memory deallocation; and
SensSetVecAtol, for the vector case of setting absolute error tolerances for sensitivities. The
SENSITIVITY routine FDQ is called by the CVODE module. FDQ is responsible for computing
Y'(t) = F(t,Y,p) by calling the user’s £ routine to evaluate y'(t) = f(¢,y,p) and by using
various finite difference formulas to estimate the scaled sensitivity derivatives w;(t).
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User Program

main(...), f(...), precond(...), psolve(...)

B B IS B
( SENSITIVITY CVODE SensCVSPGMR
sensitivity.h, sensitivity.c [ cvode.h, cvode.c Senscvspgm©—.h, senscvspgmr.c
cvspgmr.h
J L J L )
SPGMR
spgmr.h, spgmr.c
ITERATIV
iterativ.h, iterativ.c
NVECTOR
sens_nvector.h, sens_nvector.c

LLNLTYPS

IInltyps.h

LLNLMATH

IInlmath.h, lInlmath.c

F1G. 1. Owverall structure of the SensPVODE package. Modules comprising the central solver are distinguished
by rounded boxes, while the user program, linear solver, and auxiliary modules are in unrounded boxes.



The SensCVSPGMR module is called by the main program to specify that the simultaneous
corrector method, combined with SPGMR, is to be used in solving the linear systems that
arise in sensitivity analysis. Of course, this assumes that the Newton method has been
specified for the time integration nonlinear iteration. Note that the header file cvspgmr.h
is included to specify the various data types, function prototypes and enumerations used
in SensCVSPGMR. The module also contains routines which are called by the CVODE module
whenever a linear system of size Ntotal needs to be solved. The SPGMR method is called by
SensCVSPGMR to solve the (1+Ns) linear systems of size Ny. Note that the SPGMR method
consists of the modules SPGMR and ITERATIV. SensCVSPGMR also accesses the user-supplied
preconditioner solver routine, if specified, and possibly a user-supplied routine that computes
and preprocesses the preconditioner by way of the Jacobian matrix or an approximation to
it. Other linear system solvers may be added to SensPVODE in the future. Such additions
will be independent of the CVode integrator and SENSITIVITY.

Finally, at the second level, the routine CVode within the CVODE module is used to manage
the time integration. CVode makes calls to the SENSITIVITY and SensCVSPGMR modules in
order to evaluate the ODE and the scaled sensitivity derivatives, and to solve the linear
systems that arise at each Newton iteration.

The following modules reside below the levels just described. The LLNLTYPS module
defines types real, integer, and boole (boolean), and facilitates changing the precision of
the arithmetic in the package from double to single, or the reverse. The LLNLMATH module
specifies power functions and provides a function to compute the machine unit roundoff.
Finally, we now describe the NVECTOR module.

In creating SensPVODE from PVODE, we developed a sensitivity version of the NVECTOR
module. A revised NVECTOR module is needed because the overall ODE system has length
Ntotal, but it consists of 14+Ns ODE subsystems of length Ny; namely, the original nonlinear
ODE system (1) and Ns scaled sensitivity ODE systems (4). Several steps are involved in
partitioning and distributing the subsystems in a multiprocessor environment. First, each
processor is responsible for solving a contiguous portion of each subsystem, of length Nlocal.
Note that Nlocal need not be the same for each processor; however, the sum of all the Nlocal
values must be Ny. Furthermore, the 1+Ns subsystems of size Ny are identically partitioned
among the processors. This implementation is handled through the revised NVECTOR mod-
ule and its use of abstract data types: type machEnvType, for the machine environment
data block (e.g., Nlocal); and type N_Vector, a data structure for the partitioned and
distributed vectors just described. To achieve parallelism for any vector operation, each
processor performs the operation on its assigned portions of the input vectors, followed by
a global reduction where needed. In this way, vector calculations can be performed simulta-
neously with each processor working on its own block-portions of the vector.

The version of SensPVODE described so far uses MPI (Message Passing Interface [6])
for all inter-processor communication. This achieves a high degree of portability, since MPI
is becoming widely accepted as a standard for message passing software. For a different
parallel computing environment, some rewriting of the vector module could allow the use of
other specific machine-dependent instructions.



4. Using SensPVODE. This section describes the use of SensPVODE. We begin
with a brief overview, in the form of a skeleton user program. Following that are detailed
descriptions of the interface to the various user-callable routines, and of the user-supplied
routines. Finally, there are comments on usage under C++-.

4.1. Overview of Usage. The following is a skeleton of the user’s main program (or
calling program) as an application of SensPVODE. The user program is to have these steps
in the order indicated. For the sake of brevity, we defer many of the details to the later
subsections.

1.

The calling program must #include several header files so that various data types,
macros, and enumerations can be used. These header files include: 11nltyps.h,
1lnlmath.h, cvode.h, nvector.h, mpi.h; one or more of the files dense.h, band.h,
cvspgmr.h, iterativ.h, pvbbdpre.h associated with the choice of preconditioner
and/or linear system solvers; and sensitivity.h. Also, the calling program must
#define or set the integer variables Ny, Np, Ns and Ntotal.

. The calling program must define a pointer to a user-defined data block that is passed

to the user’s f routine. This data block must include a real pointer (e.g., p) that
points to the array of real parameters used by f to evaluate f(¢,y,p). For example,
if the pointer to the data block has the form typedef struct {..., real *p;}
*xf_data;, then f data->p = p; must point to the real array in which p[i-1] = p;,
fori=1,...,m.

. MPI_Init(&argc, &argv); to initialize MPI. Here argc and argv are the command

line argument counter and array received by main.

. Nlocal = the local vector length for this processor, and Ny = the global vector

length for this processor. Note that Ny is the sum of all values of Nlocal.

. machEnv = PVecInitMPI(comm, Nlocal, Ny, &argc, &argv); to initialize the

NVECTOR module. Here comm is the MPI communicator, set in one of two ways: If
a proper subset of active processors is to be used, comm must be set by suitable
MPI calls. Otherwise, to specify that all processors are to be used, comm must be
MPI_COMM_WORLD.

. The calling program must declare a real pointer (e.g., pbar) and set an array of real

values pbar[i] that are used to scale the Ns sensitivity vectors. Each pbar [i] must
be set to a nonzero constant that is dimensionally consistent with p[i]. Typically,
pbar [i]=p[i] whenever p[i] is nonzero.

Set the vector u of Ntotal initial values. If an existing data array udata contains
the initial values of u, then call u = SensN_VMAKE(Ntotal, udata, machEnv) ;.
Otherwise, make the call u = N_VNew(Ntotal, machEnv);. Conceptually, u con-
sists of (1+Ns) vectors of length Ny. To load the ¢th sensitivity vector, use usub =
N_VSUB(u); N_VDATA(usub[i]l) = wdata; where wdata is an existing data array of
length Ny. Note that usub[0] is a pointer to the N_-Vector of ODE variables, and
that usub[i] is a pointer to the N_Vector for the ¢th scaled sensitivity vector.

For the case of vector tolerances for absolute error control, a typical default is to
use the same atol as for the ODE variables. Use SensSetVecAtol(atol, Ns); to
do this. Then, alter the resulting vector elements if desired.
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9. cvode_mem = SensCVodeMalloc(...); allocates internal memory for CVODE, ini-
tializes CVODE, and returns a pointer to the CVODE memory structure. (See
details below.)

10. SensCVSpgmr (. ..); if Newton iteration is chosen. (See details below.)

11. ier = CVode(cvode_mem, tout, u, &t, itask); foreach pointt =tout at which
output is desired. Set itask to NORMAL to have the integrator overshoot tout and
interpolate, or ONE_STEP to take a single step and return. The unscaled sensitivity
vector s_i is obtained by multiplying usub[i] by the reciprocal of pbar[i];. To
do this, call N.VScale(1.0/pbar[i], usubl[il, s_i);.

12. SensCVodeFree(cvode_mem) ; to free the memory allocated for CVODE.

13. The memory that was created for the vector u in Step 7 must be deallocated:
call N_VFree(u); if u was allocated by u = N_VNew(...);, or the user must call
SensN_VDISPOSE(Ntotal, u); if u was allocated by u = SensN_VMAKE(...);.

14. Before freeing the pointer to the user-defined data block f_data, release the ar-
rays containing the scale factors pbar and the real parameters p: free(pbar);
free(f_data->p); free(f_data);.

15. PVecFreeMPI (machEnv); to free machine-dependent data.

16. MPI_Finalize();

The form of the call to SensCVodeMalloc is

cvode_mem = SensCVodeMalloc(Ny, Ns, Ntotal, f, tO, u0, lmm, iter,
itol, &rtol, atol, f_data, errfp, optlIn, iopt,
ropt, machEnv, p, pbar, rhomax)

Except for a few additions, the arguments in SensCVodeMalloc are the same as for the
PVODE routine CVodeMalloc: the integer variables (Ny, Ns, Ntotal) and the real pointers
(p, pbar) are described above; and the real variable rhomax is the finite difference threshold
parameter (pmay)—see the description relating (12) to (13) in §2. £ is the C function to
compute f(t,y,p), t0 is the initial value of ¢, and u0 is the vector of length Ntotal containing
the initial values of y (which can be the same as the vector u described above). The flag
1mm is used to select the linear multistep method and may be one of two possible values:
ADAMS or BDF. The type of iteration is selected by replacing iter with either NEWTON or
FUNCTIONAL. The next three parameters are used to set the error control. The flag itol
is replaced by either SS or SV, where SS indicates scalar relative error tolerance and scalar
absolute error tolerance, while SV indicates scalar relative error tolerance and vector absolute
error tolerance. The latter choice is important when the absolute error tolerance needs to be
different for each component of the ODE. The arguments &rtol and atol are pointers to the
user’s error tolerances, and f_data is a pointer to the user-defined data block passed directly
to the user’s £ function. The file pointer errfp points to the file where error messages from
SensPVODE are to be written (NULL for stdout). iopt and ropt are integer and real arrays
for optional input and output. If optIn is replaced by FALSE, then the user is not going to
provide optional input, while if it is TRUE then optional inputs are examined in iopt and
ropt. machEnv is a pointer to machine environment-specific information.

The form of the call to SensCVSpgmr is

SensCVSpgmr (cvode_mem, pretype, gstype, maxl, delt, Precond,

9



PSolve, P_data)
The arguments to SensCVSpgmr are the same as for CVSpgmr.

4.2. Reinitialization routines: CVReInit and SensCVReInit. The current version
of PVODE now contains a reinitialization routine CVReInit that prepares to solve additional
ODE problems using the memory initially allocated by CVodeMalloc. The reinitialization
routine assumes that the size of the ODE problem remains the same, and that the initial
memory allocation is sufficient for each new problem. The form of the call to CVReInit is
CVReInit(cvode_mem, f, t0, yO, lmm, iter, itol, &rtol, atol,

f_data, errfp, optIn, iopt[], ropt[], machEnv)

Its arguments have names and meanings identical to those of SensCVodeMalloc.

Analogously, the sensitivity version of CVReInit allows a sequence of sensitivity analysis
problems to be solved—as long as the overall ODE problem size (Ntotal) remains the same,
and the initial memory allocation is sufficient for each new problem. Except for Step 9 in §4.1,
the reinitialization process requires Steps 7-11 to be repeated. In Step 9, SensCVReInit can
be used instead of SensCVodeMalloc. The argument list for SensCVReInit is similar to
the one for SensCVodeMalloc, except cvode _mem replaces the three arguments Ny, Ns, and
Ntotal in the latter. The call has the form

ier = SensCVReInit(cvode_mem, f, tO, y0, lmm, iter, itol, &rtol, atol,

f_data, errfp, optIn, iopt[l, ropt[]l, machEnv, p, pbar, rhomax)

ier

4.3. User-Supplied Functions. The user-supplied routines consist of one function
defining the ODE, and (optionally) one or two functions that define the preconditioner for
use in the SPGMR algorithm. All of the specifications are the same as when using PVODE;
however, recall that Ny refers to the number of ODEs contained in f, and the user-supplied
data structure f_data contains a pointer (e.g., p) that points to the array of real parameters
used in f.

The first user-supplied C function must be of type RhsFn, and in the form

void f(integer Ny, real t, N_Vector y, N_Vector ydot, void *f_data)
This function includes as input the value of the independent variable t, and dependent
variable vector y. The computed value of f(¢,y,p) is stored in ydot. There is no return
value for a RhsFn.

If preconditioning is used, then the user must provide a C function to solve the linear
system Pz = r where P may be either a left or a right preconditioner matrix. This C
function must be of type CVSpgmrPSolveFn. The Psolve function has the following form:

int Psolve(integer Ny, real t, N_Vector y, N_Vector fy, N_Vector vtemp,
real gamma, N_Vector ewt, real delta, long int *nfePtr,
N_Vector r, int lr, void *P_data, N_Vector =z)
Its input includes t, the current value of the independent variable; y, the current value of
the dependent variable vector; fy, the current vector f(t,y,p); vtemp, a pointer to memory
allocated as an N_vector workspace; and gamma, the current value of the scalar hf, in
the Jacobian matrix I — hfyJ. Further input parameters are ewt, the error weight vector;
delta, an input tolerance if Psolve is to use an iterative method; nfePtr, a pointer to the
SensPVODE data nfe, the number of calls to the £ routine; r, the right hand side vector in
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the linear system; 1r, an input flag set to 1 to indicate a left preconditioner or 2 for a right
preconditioner. P_data is the pointer to the user preconditioner data passed to SensCVSpgmr.
The only output argument is z, the vector computed by Psolve. The integer returned value
is to be negative if the Psolve function failed with an unrecoverable error, 0 if Psolve was
successful, or positive if there was a recoverable error.

If the user’s preconditioner requires that any Jacobian related data be evaluated or
preprocessed, then this needs to be done in the optional user-supplied C function Precond.
The Precond function has the form:

int Precond(integer Ny, real t, N_Vector y, N_Vector fy, boole jok,
boole *jcurPtr, real gamma, N_Vector ewt, real h, real uround,
long int #*nfePtr, void *P_data, N_Vector vtempl, N_Vector vtemp2,
N_Vector vtemp3)
The arguments which have not been discussed previously are the following. The input flag
jok indicates whether or not Jacobian-related data needs to be recomputed. If jok ==
FALSE, then it is to be recomputed from scratch. If jok == TRUE, and Jacobian-related data
was saved from the previous call to Precond, then the data can be reused with the current
value of gamma. The parameter jcurPtr is a pointer to a boolean output flag to be set by
Precond. Set *jcurPtr == TRUE if the Jacobian data was recomputed, and set *jcurPtr
== FALSE if the Jacobian data was not recomputed and saved data was reused. The last
three arguments are temporary N_vectors available for workspace. The current stepsize h
and unit roundoff uround are supplied for possible use in difference quotient calculations.

4.4. Band-Block-Diagonal Preconditioner Module. SensPVODE has the same
PVBBDPRE preconditioner module that is included in PVODE. This preconditioner was devel-
oped to treat a rather broad class of problems based on solving partial differential equations
(PDEs) using a method of lines approach. The modules generate a preconditioner that is a
block-diagonal matrix, and each block contains a band matrix. The blocks need not have the
same number of super- and sub-diagonals; these numbers may vary from block to block; the
preconditioner matrix is of size Ny. The PVODE user’s guide [3] gives a complete description
of this preconditioning technique. However, the basic idea involves defining a new function
g(t,y,p) with two key properties: it approximates well the ODE right-hand side function
f(t,y,p); and the local dependencies of g on y provide a good approximation to the Jacobian
matrix df/0y.

To use this PVBBDPRE module with SensPVODE, the user must supply two functions
which the module calls to construct the preconditioner matrix P. These are in addition to
the user-supplied ODE function f.

e A function gloc(Nlocal, t, ylocal, glocal, f_data) must be supplied by the
user to compute g(t,y,p). It loads the real array glocal as a function of t, ylocal,
and the parameters p contained in f_data.

e A function cfn(Nlocal, t, y, f_data) which must be supplied to perform all
inter-processor communications necessary for the execution of the gloc function,
using the input vector y of type N_Vector.

Both functions take as input the same pointer f_data as that passed by the user to
SensCVodeMalloc and passed to the user’s function f; neither function has a return value.
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The user is responsible for providing space (presumably within f _data) for components of y
that are communicated by cfn from the other processors, and that are then used by gloc.
The function gloc is not expected to do any communication.

The usage of the PVBBDPRE module requires: (a) an additional call to PVBBDAlloc to
supply required parameters; and (b) passing specific names for the preconditioning routines
in the call to SensCVSpgmr. See [3] for details.

4.5. Use by a C++4 Application. SensPVODE is written in a manner that per-
mits it to be used by applications written in C++ as well as in C. For this purpose, each
SensPVODE header file is wrapped with conditionally compiled lines reading extern "C"
{...}, conditional on the variable __cplusplus being defined. This directive causes the
C++ compiler to use C-style names when compiling the function prototypes encountered.
Users with C++ applications should also be aware that we have defined, in 11nltyps.h, a
boolean variable type, boole, since C has no such type. The type boole is equated to type
int, and so arguments in user calls, or calls to user-supplied routines, which are of type
boole can be typed as either boole or int by the user. The same applies to vector kernels
which have a type boole return value, if the user is providing these kernels. The name boole
was chosen to avoid a conflict with the C++ type bool.

5. The Fortran/C Interface Package for SensPVODE. We anticipate that many
users of SensPVODE will work from existing Fortran application programs. To accommo-
date them, we have provided a set of interface routines that make the required connections
to SensPVODE with a minimum of changes to the application programs. Specifically, a
Fortran/C interface package called SensFPVODE is a collection of C language functions and
header files which enables the user to write a main program and all user-supplied subroutines
in Fortran and to use the C language SensPVODE package. This package entails some com-
promises in portability, but we have kept these to a minimum by requiring fixed names for
user-supplied routines, and by using a name-mapping scheme to set the names of externals
in the Fortran/C linkages. The latter depends on two parameters, set in a small header file,
which determine whether the Fortran external names are to be in upper case and whether
they are to have an underscore character prefix. The Fortran/C interfaces have been tested
on a cluster of Sun-SPARC workstations.

The usage of this module is summarized below. The argument lists are the same as for
FPVODE, except that the user-supplied functions must now attach the array of real param-
eters to their call sequence. Further details can be found in the header file sensfpvode.h.
Also, the user should check and, if necessary, reset the parameters in the file fcmixpar.h.
The functions which are callable from the user’s Fortran program are as follows:

e FPVINITMPI interfaces with PVecInitMPI and is used to initialize the NVECTOR mod-
ule.

e SFPVMALLOC interfaces with SensCVodeMalloc and is used to initialize CVode.

e SFPVREINIT interfaces with SensCVReInit and is used to reinitialize CVode for solv-
ing additional sensitivity analysis problems of size Ntotal. This routine does no
memory allocation, and assumes that the internal memory allocation created by
SFPVMALLOC is sufficient for solving each new problem.
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e SFCVSPGMRO, SFCVSPGMR1, SFCVSPGMR2 interface with SensCVSpgmr when SPGMR
has been chosen as the linear system solver. These three interface routines corre-
spond to the cases of no preconditioning, preconditioning with no saved matrix data,
and preconditioning with saved matrix data, respectively.

e FCVODE interfaces with CVode.

e FCVDKY interfaces with CVodeDky and is used to compute a derivative of order £,

0 < k < qu, where qu is the order used for the most recent time step. The derivative
is calculated at the current output time.

e SFCVFREE interfaces with SensCVodeFree and is used to free memory allocated for
CVode.

e FPVFREEMPI interfaces with PVecFreeMPI and is used to free memory allocated for
MPI.

The user-supplied Fortran subroutines are as follows. The names of these routines are
fixed and are case-sensitive. Note that the array of real parameters, P or PAR, has been added
onto the end of the call sequence.

e PVFUN which defines the function f, the right-hand side function of the system of
ODEs. It has the form

SUBROUTINE PVFUN (NLOC, T, Y, YDOT, P)

e PVPSOL which solves the preconditioner equation, and is required if preconditioning

is used. It has the form
SUBROUTINE PVPSOL (NLOC, T, Y, FY, VT, GAMMA, EWT, DELTA, NFE,
1 R, LR, Z, IER, PAR)

e PVPRECO which computes the preconditioner, and is required if preconditioning in-

volves precomputed matrix data. It has the form
SUBROUTINE PVPRECO (NLOC, T, Y, FY, JOK, JCUR, GAMMA, EWT, H,
1 UROUND, NFE, Vi, V2, V3, IER, PAR)

A similar interface package, called SFPVBBD, has been written for the PVBBDPRE pre-
conditioner module. It works in conjunction with the FPVODE interface package. The three
additional user-callable functions here are: SFPVBBDIN, which interfaces with PVBBDAlloc
and SensCVSpgmr; FPVBBDOPT, which accesses optional outputs; and FPVBBDF, which inter-
faces to PVBBDFree. The two user-supplied Fortran subroutines required, in addition to
PVFUN to define f, are: PVLOCFN, which computes ¢(¢,y,p); and PVCOMMF, which performs
the inter-processor communications needed by PVLOCFN.

6. Example Problems. Two sensitivity analysis test problems are described here.
These problems are modified versions of the example problems presented in the PVODE
user’s guide [3]. The first example is a nonstiff problem that contains 2 parameters. The
second example is a stiff problem that contains 8 parameters; however, we only compute the
sensitivities with respect to 2 of the parameters. Both problems involve the method of lines
solution of a partial differential equation (PDE).
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6.1. Example problem 1 - A nonstiff PDE problem. This problem begins with
a prototypical diffusion-advection equation for u = u(t, )

ou 0%u ou
(14) E—M@ +p28_x

for0<t<5, 0<zx<2 p =1.0andpy,=0.5.
The PDE is subject to homogeneous Dirichlet boundary conditions and the initial values

(15) u(t,0) =

u(0,z) = z(2—z)exp(2z).

A system of M X ODEs is obtained by discretizing the z-axis with M X + 2 grid points
and replacing the first and second order spatial derivatives with their central difference
approximations. Since the value of u is constant at the two endpoints, the semi-discrete
equations for those points can be eliminated. The resulting system of ODEs can now be
written with u; as the approximation to u(t,z;), z; = i(Az), and Az = 2/(MX + 1):

U1 — 2U; + Uiy Uip1 — Ui—1

Bo)? TP

(16) u;(t) = p1

The above equation holds for i = 1,2, ..., M X with the understanding that vy = up;x41 = 0.

The file spvnx. ¢ is included in the SensPVODE package and is the code for this problem.
It uses the Adams (nonstiff) integration formula and functional iteration. As it stands, it is
an unrealistically small, simple problem. The output shown below is for 10 grid points and
four processors.

1-D advection-diffusion equation, mesh size = 10
Number of sensitivity vectors: Ns = 2
Number of PEs = 4

At t = 0.00 max.norm(u) = 1.569909e+01
sensitivity s_1: max.norm = 0.000000e+00

sensitivity s_2: max.norm = 0.000000e+00
At t = 0.50 max.norm(u) = 3.052880e+00 nst = 111
sensitivity s_1: max.norm = 3.866800e+00
sensitivity s_2: max.norm = 6.202004e-01

At £t =1.00 max.norm(u) = 8.753254e-01 nst = 179
sensitivity s_1: max.norm = 2.174317e+00

sensitivity s_2: max.norm = 1.890860e-01
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At t = 1.50 max.norm(u) = 2.494878e-01 nst = 244
sensitivity s_1: max.norm = .182392e-01
sensitivity s_2: max.norm = 7.392083e-02

©

At t = 2.00 max.norm(u) = 7.109524e-02 nst = 319
sensitivity s_1: .466627e-01
sensitivity s_2: max.norm = 2.822763e-02

w

max.norm =

At t = 2.50 max.norm(u) = 2.025933e-02 nst = 385
sensitivity s_1: max.norm = 1.230116e-01

sensitivity s_2: max.norm = 1.008525e-02

At t = 3.00 max.norm(u) = 5.773203e-03 nst = 453
sensitivity s_1: max.norm = 4.195618e-02
sensitivity s_2: max.norm = 3.455627e-03

At t = 3.50 max.norm(u) = 1.645103e-03 nst = 521
sensitivity s_1: max.norm = 1.391418e-02
sensitivity s_2: max.norm = 1.167859e-03

At t = 4.00 max.norm(u) = 4.694338e-04 nst = 594
sensitivity s_1: max.norm = 4.533121e-03
sensitivity s_2: max.norm = 3.944522e¢-04

At t = 4.50 max.norm(u) = 1.350271e-04 nst = 672
sensitivity s_1: max.norm = 1.463116e-03
sensitivity s_2: max.norm = 1.266590e-04

At t = 5.00 max.norm(u) = 3.894741e-05 nst = 753
sensitivity s_1: max.norm = .668291e-04
sensitivity s_2: max.norm = 4.070255e-05

D w

Final Statistics..

nst = 753 nfe = 7006 nni = 0 ncfn = 140 netf = 2

6.2. Example problem 2 - A stiff PDE system. This test problem is based on
a two-dimensional system of two PDEs involving diurnal kinetics, advection, and diffusion.
The PDEs can be written as

i 2 .0 i ¢
0 _g,7¢  yo 9 (Kv(y)a_c> + Ri(c', 1) (1=1,2),

1 - =
(17) ot " or2 or ' oy oy
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where the superscripts ¢ are used to distinguish the chemical species, the reaction terms are
given by

(18) R'(c, 1) = —qc'c® — et + 2g3(t)® + qu(t)c® and

R, 1) = qc'd —qc'd — q(t)d,

and K,(y) = Kyexp(y/5). The spatial domain is 0 < z < 20, 30 < y < 50. Some of the
parameters for this problem are K =4.0x 1075 V =103, K, =108, ¢ = 1.63 x 10716,
g2 = 4.66 x 1071%, and ¢® = 3.7 x 10%. The diurnal rate constants are

¢;(t) = exp[—a;/sinwt] for sinwt >0 and
g(t) = 0, for sinwt <0,

where i = 3 and 4, w = 7/43200, a3 = 22.62, ay = 7.601. The time interval of integration is
[0, 86400], representing 24 hours measured in seconds.

Homogeneous Neumann boundary conditions are imposed on each boundary and the
initial conditions are

c'(2,2,0) = 10°%(z)B(y)
*(2,2,0) = 10%a(z)B(y)
(19) a(r) = 1—(0.1z —1)>+ (0.1z — 1)*/2
Bly) = 1—(0.1y—4)*+ (0.1y — 4)*/2.
The PDE system is spatially discretized on a uniform mesh using centered finite difference
approximations.

These equations represent a simplified model for the transport, production, and loss
of the oxygen singlet and ozone in the upper atmosphere. For the purpose of sensitivity
analysis, we identify the following 8 parameters associated with this problem: p; = g,
P2 = q2, P3 = C3, P2 = a3, Ps = a4, pg = Ky, pr = V, and pg = K,. However, only
sensitivities with respect to p; and p, are computed in the example.

The code listing for this example is given in the Appendix, while the code itself is in
the file spvkx.c in the SensPVODE package. The purpose of this code is to provide a
more complicated example than Example 1, and to provide a template for the sensitivity
analysis of a stiff ODE system arising from a PDE system. The solution method is BDF
with Newton iteration and SPGMR. The left preconditioner is the block-diagonal part of the
Newton matrix, with 2 x 2 blocks, and the corresponding diagonal blocks of the Jacobian are
saved each time the preconditioner is generated (for reuse later under certain conditions).

Sample output from spvkx.c follows. The output is for four processors (in a 2 x 2 array)
with a 5 x 5 subgrid on each processor.

2-species diurnal advection-diffusion problem
Number of sensitivity vectors: Ns = 2

Number of PEs = 4
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t = 7.20e+03 no. steps
At bottom left: «ci1, c2 =
At top right: cl, c2 =

sensitivity wrt p_1:

At bottom left: s_1 =
At top right: s_1 =
sensitivity wrt p_2:

At bottom left: s_2 =
At top right: s_2 =
t = 1.44e+04 no. steps
At bottom left: «cl, c2 =
At top right: cl, c2 =
sensitivity wrt p_1:

At bottom left: s_1 =
At top right: s_1 =
sensitivity wrt p_2:

At bottom left: s_2 =
At top right: s_2 =
t = 2.16e+t04 no. steps
At bottom left: «cl, c2 =
At top right: cl, c2 =
sensitivity wrt p_1:

At bottom left: s_1 =
At top right: s_1 =
sensitivity wrt p_2:

At bottom left: s_2 =
At top right: s_2 =
t = 2.88e¢+04 no. steps
At bottom left: «cl, c2 =
At top right: cl, c2 =
sensitivity wrt p_1:

At bottom left: s_1 =
At top right: s_1 =
sensitivity wrt p_2:

At bottom left: s_2 =
At top right: s_2 =

= 953 order = 3
1.047e+04 2
1.119e+04 2

-6.420e+19 7
-6.860e+19 7
-4 ,385e+14 -2
-5.006e+14 -2

= 1181 order = 3
6.659e+06 2
7.301e+06 2

-4 .085e+22 5
-4 . 478e+22 6
-4 .523e+17 -6
-5.432e+17 -7

= 1299 order = 4
2.665e+07 2
2.931e+07 3

-1.635e+23 3
-1.798e+23 4
-7.660e+18 -7
-9.443e+18 -9

= 1413 order = 2
8.702e+06 3
9.650e+06 3

-5.338e+22 5
-5.919e+22 6
-4 . 886e+18 -1
-6.104e+18 -2

17

stepsize = 3.16e+01

.527e+11
.700e+11

.118e+19

.656e+19

.441e+18
.784e+18

stepsize = 4.51e+01

.582e+11
.833e+11

.955e+22

.717e+22

.542e+21
.831e+21

stepsize 1.92e+02

.993e+11
.313e+11

.820e+23

.499e+23

.646e+22
.450e+22

stepsize = 4.07e+01

.380e+11
.751e+11

.449e+23

.743e+23

.719e+23
.152e+23



t = 3.60e+04 no. steps = 1521

At bottom left:
At top right:

cl, c2
cl, c2

sensitivity wrt p_1:

At bottom left: s_1 =
At top right: s_1 =
sensitivity wrt p_2:

At bottom left: s_2 =
At top right: s_2 =

t = 4.32e+04 no. steps
At bottom left: «c¢1, c2
At top right: cl, c2

sensitivity wrt p_1:

At bottom left: s_1 =
At top right: s_1 =
sensitivity wrt p_2:

At bottom left: s_2 =
At top right: s_2 =

t = 5.04e+04 no. steps
At bottom left: «cl1, c2
At top right: cl, c2

sensitivity wrt p_1:

At bottom left: s_1 =
At top right: s_1 =
sensitivity wrt p_2:

At bottom left: s_2 =
At top right: s_2 =

t = 5.76e+04 no. steps
At bottom left: «cl1, c2
At top right: cl, c2

sensitivity wrt p_1:

At bottom left: s_1 =
At top right: s_1 =
sensitivity wrt p_2:

At bottom left: s_2 =

1724

1752

1771

1.404e+04
1.561e+04

-8.614e+19

-9.576e+19

-8.433e+15

-1.055e+16

-4.972e-11
-4.926e-11

6.206e+07

7.013e+07

-3.067e+05

-2.300e+05

3.435e-07
3.394e-07

1.526e+11

1.510e+11

3.498e+06

4.094e+06

8.096e-08
7.736e-08

6.389e+10
6.114e+10

-2.000e+07

18

order

order

order

order

stepsize = 5.17e+01
387e+11
765e+11

.272e+23
.603e+23

.844e+23
.310e+23

stepsize = 1.80e+02

.382e+11
.804e+11

.275e+23

.745e+23

.845e+23
.360e+23

stepsize = 3.96e+02

.358e+11
.864e+11

.207e+23

.967e+23

.821e+23
.437e+23

stepsize = 2.12e+02

.320e+11
.909e+11

.083e+23
.121e+23

.778e+23



At top right: s_2

t = 6.48e+04 no. steps
At bottom left: «c¢1, c2

At top right: cl, c2

sensitivity wrt p_1:

At bottom left: s_1

At top right: s_1

sensitivity wrt p_2:

At bottom left: s_2

At top right: s_2

t = 7.20e+04 no. steps
At bottom left: «c¢1, c2

At top right: cl, c2

sensitivity wrt p_1:

At bottom left: s_1

At top right: s_1

sensitivity wrt p_2:

At bottom left: s_2

At top right: s_2

t = 7.92e+04 no. steps
At bottom left: «c¢1, c2

At top right: cl, c2

sensitivity wrt p_1:

At bottom left: s_1

At top right: s_1

sensitivity wrt p_2:

At bottom left: s_2

At top right: s_2

t = 8.64e+04 no. steps
At bottom left: «c¢1, c2

At top right: cl, c2

sensitivity wrt p_1:

At bottom left: s_1

At top right: s_1

sensitivity wrt p_2:

-2.291e+07 -2.

= 1949 order = 4
-5.432e-11 3.

-4 .728e-11 3
-5.679e+08 5
-4.970e+08 7
-6.058e+04 -1
-6.359e+04 -2

= 1967 order = 4
3.648e-12 3
3.175e-12 4

-4 .644e+06 5
-4.028e+06 7
6.910e+01 -1
7.253e+01 -2

= 1983 order = 4
9.015e-19 3.
-2.221e-18 4
-1.639e+01 5
-1.477e+01 7
-7.758e-05 -1
-8.703e-05 -2.

= 1995 order = 5
1.207e-19 3.
2.268e-20 4.
-8.837e-01 5
-6.380e-01 8.

19

491e+23

stepsize = 2.70e+02
313e+11

.963e+11

.044e+23

.328e+23

.765e+23
.563e+23

stepsize = 4.38e+02

.330e+11
.039%e+11

.078e+23

.638e+23

.T77e+23
.672e+23

stepsize = 4.38e+02
334e+11

.120e+11

.073e+23
.996e+23

.775e+23

797e+23

stepsize = 6.72e+02
352e+11
163e+11

.117e+23

214e+23



N
1]

At bottom left: s
At top right: s_2

-2.156e-06  -1.790e+23
-8.659e-07 -2.874e+23

Final Statistics..

lenrw = 6000 leniw = 0
1llrw = 2046 1liw = 0
nst = 1995 nfe = 20377
nni = 2693 nli = 6901
nsetups = 266 netf = 81
npe = 38 nps = 14866
ncfn = 2 ncfl = 0

A third example is provided with the SensPVODE package, in the file spvkxb.c. It
uses the same ODE system as in the above stiff example, but a slightly different solution
method. It uses the PVBBDPRE preconditioner module to generate a band-block-diagonal
preconditioner, using half-bandwidths equal to 2.

7. Availability. The SensPVODE package is being released for general distribution at
this time. Interested users should contact Alan Hindmarsh (alanh@llnl.gov) or Steven Lee
(slee@lInl.gov ).
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8. Appendix: Listing of Stiff Example Program, with Sensitivity Analysis.

/************************************************************************

* *
* File: spvkx.c *
* Version of: 25 August 2000 *
* *
e *

Example problem, with sensitivity analysis
An ODE system is generated from the following 2-species diurnal
kinetics advection-diffusion PDE system in 2 space dimensions:

dc(i)/dt = Kh*(d/dx)"2 c(i) + V*dc(i)/dx + (d/dy) (Kv(y)*dc(i)/dy)
+ Ri(cl,c2,t) for i = 1,2, where
R1(cl,c2,t) = -qlxcl*xc3 - g2*cl*xc2 + 2xq3(t)*c3 + q4(t)*c2 ,
R2(cl,c2,t) ql*cl*c3 - q2*cl*c2 - q4(t)*c2 ,
Kv(y) = KvOxexp(y/5) ,
Kh, V, Kv0, ql, g2, and c3 are constants, and q3(t) and q4(t)
vary diurnally. The problem is posed on the square
0 <= x <= 20, 30 <=y <= 50 (all in km),
with homogeneous Neumann boundary conditions, and for time t in
0 <= t <= 86400 sec (1 day).
The PDE system is treated by central differences on a uniform
mesh, with simple polynomial initial profiles.

The problem is solved by SensPVODE on NPE processors, treated as a
rectangular process grid of size NPEX by NPEY, with NPE = NPEX*NPEY.
Each processor contains a subgrid of size MXSUB by MYSUB of the
(x,y) mesh. Thus the actual mesh sizes are MX = MXSUB*NPEX and

MY = MYSUB*NPEY, and the ODE system size is Ny = 2*MX*MY.

The solution with SensPVODE is done with the BDF/GMRES method (i.e.
using the SensCVSPGMR linear solver) and the block-diagonal part of
the Newton matrix as a left preconditioner.

A copy of the block-diagonal part of the Jacobian is saved and
conditionally reused within the Precond routine.

Performance data and sampled solution and sensitivity values are
printed at selected output times.
A1l performance counters are printed on completion.

This version uses MPI for user routines, and the SensPVODE solver.
Execution: spvkx -npes N with N = NPEX*#NPEY (see constants below).

¥ X K K X K X X K X X K X K X X K K X K K X K X K ¥ X ¥ ¥ X ¥ ¥ X *x *
¥ X K K X K X X K X X K X K X X K K X K K X K X K ¥ X ¥ ¥ X ¥ ¥ X *x *
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************************************************************************/

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "llnltyps.h" /% definitions of real, integer, boole, TRUE,FALSE */
#include '"cvode.h" /* main CVODE header file */
#include "iterativ.h" /* contains the enum for types of preconditioning */
#include "cvspgmr.h"  /* use CVSPGMR linear solver each internal step */
#include "smalldense.h" /* use generic DENSE solver in preconditioning */
#include '"nvector.h" /* definitions of type N_Vector, macro N_VDATA */
#include "llnlmath.h" /* contains SQR macro */
#include "mpi.h" /* MPI data types and prototypes */
#include "sensitivity.h" /* sensitivity data types and prototypes */
/* Problem Constants */
#define NVARS 2 /* number of species */
#define C1_SCALE 1.0e6 /* coefficients in initial profiles */
#define C2_SCALE 1.0e12
#define TO 0.0 /* initial time */
#define NOUT 12 /* number of output times */
#define TWOHR 7200.0 /* number of seconds in two hours */
#define HALFDAY 4.32e4 /* number of seconds in a half day */
#define PI 3.1415926535898  /* pi */
#define XMIN 0.0 /* grid boundaries in x */
#define XMAX 20.0
#define YMIN 30.0 /* grid boundaries in y */
#define YMAX 50.0
#define NPEX 2 /* no. PEs in x direction of PE array */
#define NPEY 2 /* no. PEs in y direction of PE array */
/* Total no. PEs = NPEX*NPEY */
#define MXSUB 5 /* no. x points per subgrid */
#define MYSUB 5 /* no. y points per subgrid */
#define MX (NPEX*MXSUB) /* MX = number of x mesh points */
#define MY (NPEY*MYSUB)  /* MY = number of y mesh points */
/* Spatial mesh is MX by MY */
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#define Ny NVARS*MX*MY /* number of equations */

#define Np 8 /* number of parameters */
##define Ns 2 /* number of sensitivities x/
#define ZERO RCONST(0.0) /% real 0.0 */
#define ONE RCONST(1.0) /* real 1.0 */
#tdefine TWO RCONST(2.0) /* real 2.0 */

/* CVodeMalloc Constants */

#define RTOL 1.0e-5 /* scalar relative tolerance */

#define FLOOR 100.0 /* value of C1 or C2 at which tolerances */
/* change from relative to absolute */

#define ATOL (RTOL*FLOOR) /* scalar absolute tolerance */

/* User-defined matrix accessor macro: IJth */

/* IJth is defined in order to write code which indexes into small dense
matrices with a (row,column) pair, where 1 <= row,column <= NVARS.

IJth(a,i,j) references the (i,j)th entry of the small matrix real *xa,
where 1 <= i,j <= NVARS. The small matrix routines in dense.h

work with matrices stored by column in a 2-dimensional array. In C,
arrays are indexed starting at 0, not 1. */

#define IJth(a,i,j) (alj-11[i-11)

/* Type : UserData
contains problem constants, preconditioner blocks, pivot arrays,
grid constants, and processor indices */

typedef struct {
real om, dx, dy, q4;
real uext [NVARS*(MXSUB+2)*(MYSUB+2)];
integer my_pe, isubx, isuby, nvmxsub, nvmxsub2;
real *p;
MPI_Comm comm;
} *UserData;

typedef struct {
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void *f_data;
real **P[MXSUB][MYSUB], **Jbd[MXSUB][MYSUR] ;
integer *pivot[MXSUB] [MYSUB];

} *PreconData;

/* Private Helper Functions */

static PreconData AllocPreconData(UserData data);
static void InitUserData(integer my_pe, MPI_Comm comm, UserData data);
static void FreePreconData(PreconData pdata);
static void SetInitialProfiles(N_Vector u, UserData data);
static void PrintOutput(integer my_pe, MPI_Comm comm, long int ioptl[],
real ropt[], N_Vector u, real t);
static void SensPrintOutput(integer my_pe, MPI_Comm comm, long int iopt[],
real ropt[], N_Vector w, real *pbar, integer i, real t);
static void PrintFinalStats(long int ioptl[]);
static void BSend(MPI_Comm comm, integer my_pe, integer isubx, integer isuby,
integer dsizex, integer dsizey, real udatall);
static void BRecvPost(MPI_Comm comm, MPI_Request request[], integer my_pe,
integer isubx, integer isuby,
integer dsizex, integer dsizey,
real uext[], real buffer[]);
static void BRecvWait(MPI_Request request[], integer isubx, integer isuby,
integer dsizex, real uext[], real buffer[]);
static void ucomm(integer N, real t, N_Vector u, UserData data);
static void fcalc(integer N, real t, real udatall, real dudatal]l, UserData data);

/* Functions Called by the CVODE Solver */
static void f(integer N, real t, N_Vector u, N_Vector udot, void *f_data);

static int Precond(integer N, real tn, N_Vector u, N_Vector fu, boole jok,
boole *jcurPtr, real gamma, N_Vector ewt, real h,
real uround, long int *nfePtr, void *P_data,
N_Vector vtempl, N_Vector vtemp2, N_Vector vtemp3);

static int PSolve(integer N, real tn, N_Vector u, N_Vector fu, N_Vector vtemp,
real gamma, N_Vector ewt, real delta, long int *nfePtr,
N_Vector r, int lr, void *P_data, N_Vector z);

/***************************** Main Program ******************************/
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main(int argc, char *argv[])
{
real abstol, reltol, t, tout, ropt[0PT_SIZE];
long int iopt[OPT_SIZE];
N_Vector u;
UserData data;
PreconData predata;
void *cvode_mem;
int iout, flag, 1i;
integer local_N, my_pe, npes;
machEnvType machEnv;
MPI_Comm comm;
real Q1, Q2, C3, A3, A4, KH, VEL, KVO;
N_Vector *usub;
integer Ntotal;
real *pbar, rhomax;

/* Set problem size */
Ntotal = (1+Ns)*Ny;

/* Set problem parameters */

QL = 1.63e-16;
Q2 = 4.66e-16;
C3 = 3.7el6;
A3 = 22.62;
A4 = 7.601;
KH = 4.0e-6;
VEL = 0.001;
KVO = 1.0e-8;

/* Get processor number and total number of pe’s */
MPI_Init(&argc, &argv);

comm = MPI_COMM_WORLD;

MPI_Comm_size(comm, &npes);

MPI_Comm_rank (comm, &my_pe);

if (npes != NPEX*NPEY) {
if (my_pe == 0)
printf("\n npes=Yd is not equal to NPEX*NPEY=}d\n", npes,NPEX*NPEY);
return(1) ;

}
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/* Set local length */
local_N = NVARS*MXSUB*MYSUB;

/* Set machEnv block */
machEnv = PVecInitMPI(comm, local_N, Ny, &argc, &argv);
if (machEnv == NULL) return(l);

/* Allocate and load user data block */
data = (UserData) malloc(sizeof *data);
data->p = (real *) malloc(Np*sizeof(real));
data->p[0] = Q1;

data->p[1] = Q2;

data->p[2] = C3;

data->p[3] = A3;

data->p[4] = A4;

data->p[5] = KH;

data->p[6] = VEL;

data->p[7] = KVO;

InitUserData(my_pe, comm, data);

/* Scaling factor for each sensitivity equation */
pbar = (real *) malloc(Np*sizeof(real));
for (i = 1; i <= Ns; i++)

pbar[i-1] = data->pl[i-1];

/* Allocate preconditioner block */
predata = AllocPreconData (data);

/* Allocate u, and set initial values and tolerances */
u = N_VNew(Ntotal, machEnv);
SetInitialProfiles(u, data);
abstol = ATOL; reltol = RTOL;

/* Set initial values for sensitivity variables */
usub = N_VSUB(u);
for (1 = 1; i <= Ns; i++)

N_VConst (ZERQ, usub[il);

/* Set (optional) inputs in iopt and ropt arrays */
for (i = 0; i < OPT_SIZE; i++) {

iopt[i] = 0;

ropt[i] = 0.0;
}
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iopt [MXSTEP] = 1000;

/* rhomax selects the finite difference formula for estimating */
/* scaled sensitivity vectors. */
/* rhomax = 0.0 is the default value. */
rhomax = ZERO;

/* Call SensCVodeMalloc to initialize CVODE:

Ny is the number of ODEs in u’ = f(t,u,p)

Ns is the number of sensitivity vectors to compute

Ntotal is the problem size = total number of ODEs = Ny*(Ns+1)

f is the user’s right hand side function in u’ = f(t,u,p)
TO is the initial time

u is the initial dependent variable vector of length Ntotal
BDF specifies the Backward Differentiation Formula

NEWTON specifies a Newton iteration

SS specifies scalar relative and absolute tolerances

&reltol and &abstol are pointers to the scalar tolerances

data is the pointer to the user-defined block of coefficients
TRUE indicates there are optional inputs in iopt and ropt

iopt and ropt arrays communicate optional integer and real input/output
data->p is a pointer to the parameter values

pbar is a pointer to the sensitivity scaling factors

rhomax selects the formula for estimating scaled sensitivity derivatives
A pointer to CVODE problem memory is returned and stored in cvode_mem. */

cvode_mem = SensCVodeMalloc(Ny, Ns, Ntotal, f, TO, u, BDF, NEWTON, SS,
&reltol, &abstol, data, NULL, TRUE, iopt,
ropt, machEnv, data->p, pbar, rhomax);

if (cvode_mem == NULL) { printf("SensCVodeMalloc failed."); return(l); }

/* Call SensCVSpgmr to specify the CVODE linear solver CVSPGMR with
left preconditioning, modified Gram-Schmidt orthogonalization,
default values for the maximum Krylov dimension maxl and the tolerance
parameter delt, preconditioner setup and solve routines Precond and
PSolve, and the pointer to the preconditioner data block. */

SensCVSpgmr (cvode_mem, LEFT, MODIFIED_GS, 0, 0.0, Precond, PSolve, predata);

if (my_pe == 0) {
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printf ("\n2-species diurnal advection-diffusion problem\n");
printf ("Number of sensitivity vectors: Ns = %3d \n", Ns);
printf ("Number of PEs = %3d \n\n",npes);

}

/* In loop over output points, call CVode, print results, test for error */

for (iout=1, tout = TWOHR; iout <= NOUT; iout++, tout += TWOHR) {
flag = CVode(cvode_mem, tout, u, &t, NORMAL);
PrintOutput (my_pe, comm, iopt, ropt, u, t);
for (i = 1; i <= Ns; i++) {
if (my_pe == 0) {
printf("sensitivity wrt p_%d:\n", i);
}
SensPrintOutput (my_pe, comm, iopt, ropt, usub[i], pbar, i, t);
if ((my_pe == 0) && (i == Ns)) printf("\n");
}
if (flag != SUCCESS) {
if (my_pe == 0) printf("CVode failed, flag=/d.\n", flag);
break;
}
}

/* Free memory and print final statistics */
if (my_pe == 0) PrintFinalStats(iopt);

SensCVodeFree(cvode_mem) ;

N_VFree(u);
free(pbar) ;
free(data->p);
free(data);

FreePreconData(predata) ;
PVecFreeMPI (machEnv) ;
MPI_Finalize();
return(0) ;

/*********************** Private Helper Functions ************************/

/* Allocate memory for data structure of type UserData */
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static PreconData AllocPreconData(UserData fdata)

{
int 1x, ly;
PreconData pdata;
pdata = (PreconData) malloc(sizeof *pdata);
pdata—>f_data = fdata;
for (1x = 0; 1lx < MXSUB; 1x++) {
for (1y = 0; ly < MYSUB; ly++) {
(pdata->P) [1x] [1y] = denalloc(NVARS);
(pdata->Jbd) [1x] [1y] = denalloc(NVARS);
(pdata->pivot) [1x] [1y] = denallocpiv(NVARS);
}
}
return(pdata) ;
}

/* Load constants in data */

static void InitUserData(integer my_pe, MPI_Comm comm, UserData data)
{

integer isubx, isuby;

real KH, VEL, KVO;

/* Load problem coefficients and parameters */
KH = data->p[5];
VEL = data->pl[6];
KVO = data->pl[7];

/* Set problem constants */

data->om = PI/HALFDAY;
data->dx = (XMAX-XMIN)/((real) (MX-1));
data->dy = (YMAX-YMIN)/((real) (MY-1));

/* Set machine-related constants */

data->comm = comm;

data->my_pe = my_pe;

/* isubx and isuby are the PE grid indices corresponding to my_pe */
isuby = my_pe/NPEX;
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isubx = my_pe - isuby*NPEX;

data->isubx = isubx;

data->isuby = isuby;

/* Set the sizes of a boundary x-line in u and uext */
data->nvmxsub = NVARS*MXSUB;

data—>nvmxsub2 = NVARS* (MXSUB+2) ;

/* Free data memory */

static void FreePreconData(PreconData pdata)

{
int 1x, ly;

for (1x = 0; 1lx < MXSUB; 1x++) {
for (ly = 0; 1y < MYSUB; 1ly++) {
denfree ((pdata->P) [1x] [1y]);
denfree ((pdata->Jbd) [1x] [1y]) ;
denfreepiv((pdata->pivot) [1x] [1y]);
}
}

free(pdata);

/* Set initial conditions in u */
static void SetInitialProfiles(N_Vector u, UserData data)
{

integer isubx, isuby, lx, ly, jx, jy, offset;

real dx, dy, x, y, ¢x, ¢y, xmid, ymid;

real *udata;

/* Set pointer to data array in vector u */

udata = N_VDATA(u);

/* Get mesh spacings, and subgrid indices for this PE */

dx = data->dx; dy = data->dy;
isubx = data—->isubx; isuby = data->isuby;
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/* Load initial profiles of cl1 and c2 into local u vector.
Here 1x and ly are local mesh point indices on the local subgrid,
and jx and jy are the global mesh point indices. */

offset = 0;
xmid = .5*(XMIN + XMAX);
ymid = .5%(YMIN + YMAX);
for (ly = 0; 1y < MYSUB; 1ly++) {
jy = ly + isuby*MYSUB;
y = YMIN + jyxdy;
cy = SQR(0.1x(y - ymid));
cy = 1.0 - cy + 0.5%SQR(cy);
for (1x = 0; 1x < MXSUB; 1x++) {
jx = 1x + isubx*MXSUB;
x = XMIN + jx*dx;
cx = SQR(0.1x(x - xmid));
cx = 1.0 - ¢cx + 0.5%SQR(cx);
udataloffset 1] C1_SCALE*cx*cCy;
udatal[offset+1] C2_SCALE*cx*cCy;
offset = offset 2;

<+

/* Print current t, step count, order, stepsize, and sampled cl,c2 values */

static void PrintOutput(integer my_pe, MPI_Comm comm, long int ioptl[],
real ropt[], N_Vector u, real t)
{
real *udata, tempul[2];
integer npelast, i0, il;
MPI_Status status;

npelast = NPEX*NPEY - 1;
udata = N_VDATA(u);

/* Send c1,c2 at top right mesh point to PE 0 */
if (my_pe == npelast) {
i0 = NVARS*MXSUB*MYSUB - 2;
il =10 + 1;
if (npelast != 0)
MPI_Send(&udatal[i0], 2, PVEC_REAL_MPI_TYPE, 0, O, comm);
else {
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tempu[0] = udataliO];
tempu[1] = udatal[ill;
}
}

/* On PE 0, receive cl,c2 at top right, then print performance data
and sampled solution values */
if (my_pe == 0) {
if (npelast != 0)
MPI_Recv(&tempu[0], 2, PVEC_REAL_MPI_TYPE, npelast, 0, comm, &status);
printf("t = %.2e no. steps = %d order = Jd stepsize = %.2e\n",
t, iopt[NST], iopt[QU], ropt[HU]);
printf ("At bottom left: «c1, c2 = %12.3e %12.3e \n", udatal[0], udatall]);
printf("At top right: cl, ¢2 = %12.3e %12.3e \n\n", tempu[0], tempul[l]);
}
}

static void SensPrintOutput(integer my_pe, MPI_Comm comm, long int ioptl[l],
real ropt[], N_Vector w, real *pbar, integer i,
real t)

real *wdata, tempw[2];
integer npelast, i0, iil;
MPI_Status status;

npelast = NPEX*NPEY - 1;
wdata = N_VDATA(w);

/* w is one of the NS sensitivity vectors */
/* Send w at top right mesh point to PE 0 */
if (my_pe == npelast) {
i0 = NVARS*MXSUB*MYSUB - 2;
il = i0 + 1;
if (npelast != 0)
MPI_Send(&wdatal[iO], 2, PVEC_REAL_MPI_TYPE, 0, O, comm);

else {
tempw[0] = wdatal[iO];
tempw[1] = wdatalil];
}

}

/* On PE 0, receive w at top right, then print performance data
and sampled solution values */
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if (my_pe == 0) {

if (npelast != 0)
MPI_Recv(&tempw[0], 2, PVEC_REAL_MPI_TYPE, npelast, 0, comm, &status);

printf ("At bottom left: s_hd = %12.3e %12.3e \n",
i,wdata[0]/pbar[i-1],wdata[1]/pbar[i-1]);
printf ("At top right: s_hd = %12.3e %12.3e \n",
i,tempw[0]/pbar[i-1],tempw[1]/pbar[i-1]);

}

/* Print final statistics contained in iopt */

static void PrintFinalStats(long int ioptl[])

{
printf ("\nFinal Statistics.. \n\n");
printf("lenrw %51d leniw = %51d\n", iopt[LENRW], iopt[LENIW]);
printf("llrw %51d 1liw = %51d\n", iopt[SPGMR_LRW], iopt[SPGMR_LIW]);

printf("nst = %51d nfe = %51d\n", iopt[NST], iopt[NFE]);

printf ("nni = %51d nli = %51d\n", iopt[NNI], iopt[SPGMR_NLI]);
printf ("nsetups = ’51d netf = %51d\n", iopt[NSETUPS], iopt[NETF]);

printf ("npe = %51d nps = %51d\n", iopt[SPGMR_NPE], iopt[SPGMR_NPS]);

%51d  ncfl = %51d\n \n", iopt[NCFNI, iopt[SPGMR_NCFL]);

printf("ncfn

/* Routine to send boundary data to neighboring PEs */

static void BSend(MPI_Comm comm, integer my_pe, integer isubx, integer isuby,
integer dsizex, integer dsizey, real udatal])
{
int i, ly;
integer offsetu, offsetbuf;
real bufleft[NVARS*MYSUB], bufright[NVARS*MYSUB] ;

/* If isuby > 0, send data from bottom x-line of u */

if (isuby != 0)
MPI_Send(&udatal[0], dsizex, PVEC_REAL_MPI_TYPE, my_pe-NPEX, 0, comm);

/* If isuby < NPEY-1, send data from top x-line of u */

if (isuby != NPEY-1) {
offsetu = (MYSUB-1)*dsizex;
MPI_Send (&udatal[offsetul, dsizex, PVEC_REAL_MPI_TYPE, my_pe+NPEX, 0, comm);
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/* If isubx > 0, send data from left y-line of u (via bufleft) */

if (isubx !'= 0) {
for (ly = 0; 1y < MYSUB; 1ly++) {
offsetbuf = 1y*NVARS;
offsetu = ly*dsizex;
for (i = 0; i < NVARS; i++)
bufleft[offsetbuf+i] = udataloffsetu+i];
}
MPI_Send (&bufleft[0], dsizey, PVEC_REAL_MPI_TYPE, my_pe-1, 0, comm);
}

/* If isubx < NPEX-1, send data from right y-line of u (via bufright) */

if (isubx !'= NPEX-1) {
for (1y = 0; 1y < MYSUB; 1ly++) {
offsetbuf = 1y*NVARS;
offsetu = offsetbuf*MXSUB + (MXSUB-1)*NVARS;
for (i = 0; i < NVARS; i++)
bufright [offsetbuf+i] = udataloffsetu+i];
}
MPI_Send(&bufright [0], dsizey, PVEC_REAL_MPI_TYPE, my_pe+l, O, comm);
}

/* Routine to start receiving boundary data from neighboring PEs.
Notes:
1) buffer should be able to hold 2*xNVARS*MYSUB real entries, should be
passed to both the BRecvPost and BRecvWait functions, and should not
be manipulated between the two calls.
2) request should have 4 entries, and should be passed in both calls also.

static void BRecvPost(MPI_Comm comm, MPI_Request request[], integer my_pe,
integer isubx, integer isuby,
integer dsizex, integer dsizey,
real uext[], real buffer[])

integer offsetue;
/* Have bufleft and bufright use the same buffer */
real xbufleft = buffer, *bufright = buffer+NVARS*MYSUB;
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/* If isuby > 0, receive data for bottom x-line of uext */
if (isuby != 0)
MPI_Irecv(&uext [NVARS], dsizex, PVEC_REAL_MPI_TYPE,
my_pe-NPEX, O, comm, &request[0]);

/* If isuby < NPEY-1, receive data for top x-line of uext */
if (isuby != NPEY-1) {
offsetue = NVARS*(1 + (MYSUB+1)* (MXSUB+2));
MPI_Irecv(&uext[offsetue], dsizex, PVEC_REAL_MPI_TYPE,
my_pe+NPEX, 0, comm, &request[1]);

/* If isubx > 0, receive data for left y-line of uext (via bufleft) */
if (isubx !'= 0) {
MPI_Irecv(&bufleft[0], dsizey, PVEC_REAL_MPI_TYPE,
my_pe-1, 0, comm, &request[2]);

/* If isubx < NPEX-1, receive data for right y-line of uext (via bufright) x/
if (isubx != NPEX-1) {
MPI_Irecv(&bufright[0], dsizey, PVEC_REAL_MPI_TYPE,
my_pe+l, 0, comm, &request[3]);

/* Routine to finish receiving boundary data from neighboring PEs.
Notes:
1) buffer should be able to hold 2*NVARS*MYSUB real entries, should be
passed to both the BRecvPost and BRecvWait functions, and should not
be manipulated between the two calls.
2) request should have 4 entries, and should be passed in both calls also. */

static void BRecvWait(MPI_Request request[], integer isubx, integer isuby,
integer dsizex, real uext[], real buffer[])

{
int i, ly;
integer dsizex2, offsetue, offsetbuf;
real *bufleft = buffer, *bufright = buffer+NVARS*MYSUB;
MPI_Status status;

dsizex2 = dsizex + 2*NVARS;
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/* If isuby > 0, receive data for bottom x-line of uext */
if (isuby != 0)
MPI_Wait (&request[0],&status) ;

/* If isuby < NPEY-1, receive data for top x-line of uext */
if (isuby != NPEY-1)
MPI_Wait (&request[1],&status);

/* If isubx > 0, receive data for left y-line of uext (via bufleft) =/
if (isubx != 0) {
MPI_Wait (&request[2],&status);

/* Copy the buffer to uext */
for (ly = 0; 1y < MYSUB; 1ly++) {
offsetbuf = 1y*NVARS;
offsetue = (ly+1)*dsizex2;
for (i = 0; i < NVARS; i++)
uext [offsetue+i] = bufleft[offsetbuf+il;

/* If isubx < NPEX-1, receive data for right y-line of uext (via bufright) x/
if (isubx != NPEX-1) {
MPI_Wait (&request[3],&status);

/* Copy the buffer to uext */

for (ly = 0; 1y < MYSUB; 1ly++) {
offsetbuf = 1y*NVARS;
offsetue = (ly+2)*dsizex2 - NVARS;
for (i = 0; i < NVARS; i++)

uext [offsetue+i] = bufright[offsetbuf+i];
}
}

/* ucomm routine. This routine performs all communication
between processors of data needed to calculate f. */

static void ucomm(integer N, real t, N_Vector u, UserData data)

{
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real *udata, *uext, buffer[2x*NVARS*MYSUB] ;
MPI_Comm comm;

integer my_pe, isubx, isuby, nvmxsub, nvmysub;
MPI_Request request[4];

udata = N_VDATA(u);

/* Get comm, my_pe, subgrid indices, data sizes, extended array uext */

comm = data->comm; my_pe = data->my_pe;

isubx = data->isubx; isuby = data->isuby;
nvmxsub = data->nvmxsub;
nvmysub = NVARS*MYSUB;

uext = data->uext;

/* Start receiving boundary data from neighboring PEs */

BRecvPost (comm, request, my_pe, isubx, isuby, nvmxsub, nvmysub, uext, buffer);
/* Send data from boundary of local grid to neighboring PEs */

BSend (comm, my_pe, isubx, isuby, nvmxsub, nvmysub, udata);

/* Finish receiving boundary data from neighboring PEs */

BRecvWait(request, isubx, isuby, nvmxsub, uext, buffer);

/* fcalc routine. Compute f(t,y). This routine assumes that communication
between processors of data needed to calculate f has already been done,
and this data is in the work array uext. */

static void fcalc(integer N, real t, real udatal[], real dudatal[], UserData data)
{

real *uext;

real q3, c1, c2, cldn, c¢2dn, clup, c2up, cllt, c2lt;

real clrt, c2rt, cydn, cyup, hordl, hord2, horadl, horad2;

real qql, qq2, qg93, qg4, rkinl, rkin2, s, vertdl, vertd2, ydn, yup;

real q4coef, dely, verdco, hordco, horaco;
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int i, 1x, ly, jx, jy;
integer isubx, isuby, nvmxsub, nvmxsub2, offsetu, offsetue;
real Q1, Q2, C3, A3, A4, KH, VEL, KVO;

/* Load problem coefficients and parameters */
Q1 = data->p[0];

Q2 = data->p[i];
C3 = data->p[2];
A3 = data—>p[3];
A4 = data->p[4];
KH = data->p[5];
VEL = data->pl[6];
KVO = data->pl[7];

/* Get subgrid indices, data sizes, extended work array uext x/
isubx = data->isubx; isuby = data->isuby;

nvmxsub = data->nvmxsub; nvmxsub2 = data->nvmxsub2;

uext = data->uext;

/* Copy local segment of u vector into the working extended array uext */

offsetu = 0;

offsetue = nvmxsub2 + NVARS;

for (ly = 0; ly < MYSUB; 1ly++) {
for (1 = 0; i < nvmxsub; i++) uext[offsetue+i] = udataloffsetu+i];
offsetu = offsetu + nvmxsub;
offsetue = offsetue + nvmxsub2;

/* To facilitate homogeneous Neumann boundary conditions, when this is
a boundary PE, copy data from the first interior mesh line of u to uext */

/* If isuby = 0, copy x-line 2 of u to uext */
if (isuby == 0) {
for (i = 0; i < nvmxsub; i++) uext[NVARS+i] = udata[nvmxsub+i];

3

/* If isuby = NPEY-1, copy x-line MYSUB-1 of u to uext */
if (isuby == NPEY-1) {
offsetu = (MYSUB-2)*nvmxsub;
offsetue = (MYSUB+1)*nvmxsub2 + NVARS;
for (i = 0; i < nvmxsub; i++) uext[offsetue+i] = udataloffsetu+i];

}
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/* If isubx = 0, copy y-line 2 of u to uext */
if (isubx == 0) {
for (ly = 0; ly < MYSUB; ly++) {
offsetu = ly*nvmxsub + NVARS;
offsetue = (ly+1)*nvmxsub2;
for (i = 0; i < NVARS; i++) uext[offsetue+i] = udataloffsetu+il;
}
}

/* If isubx = NPEX-1, copy y-line MXSUB-1 of u to uext x/
if (isubx == NPEX-1) {
for (1y = 0; 1y < MYSUB; 1ly++) {
offsetu = (ly+1)*nvmxsub - 2*NVARS;
offsetue = (1ly+2)*nvmxsub2 - NVARS;
for (i = 0; i < NVARS; i++) uext[offsetue+i] = udatal[offsetu+il;
}
}

/* Make local copies of problem variables, for efficiency */

dely = data->dy;

verdco = (1.0/SQR(data->dy))*KV0;
hordco = KH/SQR(data->dx) ;
horaco = VEL/(2.0*data->dx) ;

/* Set diurnal rate coefficients as functions of t, and save g4 in
data block for use by preconditioner evaluation routine */

s = sin((data->om)*t) ;
if (s > 0.0) {
q3 = exp(-A3/s);
q4coef = exp(-A4/s);

} else {
Q3 = 0.0;
gq4coef = 0.0;
}
data->q4 = q4coef;

/* Loop over all grid points in local subgrid */

for (ly = 0; ly < MYSUB; ly++) {
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jy = 1y + isuby*MYSUB;
/* Set vertical diffusion coefficients at jy +- 1/2 */

ydn = YMIN + (jy - .5)*dely;

yup = ydn + dely;

cydn = verdcoxexp(0.2%ydn) ;

cyup = verdco*exp(0.2*yup);

for (1x = 0; 1lx < MXSUB; 1x++) {

jx = 1x + isubx*MXSUB;
/* Extract cl and c2, and set kinetic rate terms */

offsetue = (1x+1)*NVARS + (ly+1)*nvmxsub2;
cl = uext[offsetue];

c2 = uext[offsetue+1];

qql = Q1x*c1x*C3;

qq2 = Q2*clxc2;

qq3 = q3*C3;

qq4 = q4coef*c2;

rkinl = -qql - qg2 + 2.0%qq3 + qg4;

rkin2 = qql - qq2 - qq4;

/* Set vertical diffusion terms */

cldn = uext[offsetue—nvmxsub2];
c2dn = uext[offsetue-nvmxsub2+1];
clup = uext[offsetue+nvmxsub2];

c2up = uext[offsetue+nvmxsub2+1];
vertdl = cyup*(clup - cl) - cydn*(cl - cidn);
vertd2 = cyup*(c2up - ¢2) - cydn*(c2 - c2dn);

/* Set horizontal diffusion and advection terms x*/

c11lt = uext[offsetue-2];
c21t = uext[offsetue-1];
clrt = uext[offsetue+2];
c2rt = uext[offsetue+3];

hordl = hordco*(clrt - 2.0%cl + cl1lt);
hord2 = hordco*x(c2rt — 2.0%c2 + c21t);
horadl = horacox(clrt - cllt);
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horad2 = horacox(c2rt - c2lt);

/* Load all terms into dudata */

offsetu =
dudataloffsetul =
dudataloffsetu+l] =

1x*NVARS + ly*nvmxsub;
vertdl + hordl + horadl + rkinli;
vertd2 + hord2 + horad2 + rkin2;

/***************** Functions Called by the CVODE Solver ******************/

/* f routine. Evaluate f(t,y).
subgrid boundary data into uext.

First call ucomm to do communication of

Then calculate f by a call to fcalc. */

static void f(integer N, real t, N_Vector u, N_Vector udot, void *f_data)

{
real xudata, *dudata;
UserData data;

udata =
dudata =
data =

N_VDATA (u) ;
N_VDATA (udot) ;
(UserData) f_data;

/* Call ucomm to do inter-processor communicaiton */

ucomm (N, t, u, data);

/* Call fcalc to calculate all right-hand sides */

fcalc (N, t, udata, dudata, data);

/* Preconditioner setup routine. Generate and preprocess P. */

static int Precond(integer N, real tn, N_Vector u, N_Vector fu, boole jok,
boole *jcurPtr, real gamma, N_Vector ewt, real h,
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real uround, long int *nfePtr, void *P_data,
N_Vector vtempl, N_Vector vtemp2, N_Vector vtemp3)

real cl, c2, cydn, cyup, diag, ydn, yup, qécoef, dely, verdco, hordco;
real *x(*P) [MYSUB], **(*Jbd) [MYSUB];

integer nvmxsub, *(xpivot) [MYSUB], ier, offset;

int 1x, ly, jx, jy, isubx, isuby;

real xudata, **a, **j;

PreconData predata;

UserData data;

real Q1, Q2, C3, A3, A4, KH, VEL, KVO;

/* Make local copies of pointers in P_data, pointer to u’s data,
and PE index pair */

predata = (PreconData) P_data;

data = (UserData) (predata->f_data);

P = predata->P;

Jbd = predata->Jbd;

pivot = predata->pivot;

udata = N_VDATA(u);

isubx data->isubx; isuby = data->isuby;
nvmxsub = data->nvmxsub;

/* Load problem coefficients and parameters */
Q1 = data->p[0];

Q2 = data->p[1];
C3 = data—>p[2];
A3 = data->p[3];
A4 = data->pl[4];
KH = data->p[5];
VEL = data->pl[6];
KVO = data->p[7];
if (jok) {

/* jok = TRUE: Copy Jbd to P */
for (ly = 0; ly < MYSUB; ly++)
for (1x = 0; 1x < MXSUB; lx++)
dencopy (Jbd[1x] [1y], P[1x][ly], NVARS);

*jcurPtr = FALSE;
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else {
/* jok = FALSE: Generate Jbd from scratch and copy to P */
/* Make local copies of problem variables, for efficiency */

q4coef = data->q4;

dely = data->dy;

verdco = (1.0/SQR(data->dy))*KVO0;
hordco = KH/SQR(data->dx) ;

/* Compute 2x2 diagonal Jacobian blocks (using q4 values
computed on the last f call). Load into P. */

for (1y = 0; 1y < MYSUB; 1ly++) {

jy = 1y + isuby*MYSUB;

ydn = YMIN + (jy - .5)*dely;

yup = ydn + dely;

cydn = verdcox*exp(0.2*ydn) ;

cyup = verdcoxexp(0.2*yup) ;

diag = -(cydn + cyup + 2.0%hordco);

for (1x = 0; 1lx < MXSUB; 1x++) {
jx = 1x + isubx*MXSUB;
offset = 1x*NVARS + ly*nvmxsub;
cl = udatal[offset];
c2 = udataloffset+1];
j = Jbd[1x][1y];
a = P[1x][1y];
IJth(j,1,1) (-Q1*C3 - Q2%c2) + diag;
IJth(j,1,2) = -Q2*%cl + qg4coef;

IJth(j,2,1) = Q1*C3 - Q2%c2;
I1Jth(j,2,2) = (-Q2%cl - qg4coef) + diag;
dencopy(j, a, NVARS);

*jcurPtr = TRUE;

}
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/* Scale by -gamma */

for (ly = 0; 1y < MYSUB; ly++)
for (1x = 0; 1x < MXSUB; lx++)
denscale(-gamma, P[1x][1ly], NVARS);

/* Add identity matrix and do LU decompositions on blocks in place */

for (1x = 0; 1x < MXSUB; 1lx++) {
for (1y = 0; ly < MYSUB; 1ly++) {
denaddI(P[1x][1y], NVARS);
ier = gefa(P[1x][1ly], NVARS, pivot[1x][1lyl);
if (ier != 0) return(l);
}
}

return(0) ;

/* Preconditioner solve routine */

static int PSolve(integer N, real tn, N_Vector u, N_Vector fu, N_Vector vtemp,
real gamma, N_Vector ewt, real delta, long int *nfePtr,
N_Vector r, int lr, void *P_data, N_Vector z)

real **(*P)[MYSUB];

integer nvmxsub, *(xpivot) [MYSUB];
int 1x, ly;

real *zdata, *v;

PreconData predata;

UserData data;

/* Extract the P and pivot arrays from P_data */

predata = (PreconData) P_data;

data = (UserData) (predata->f_data);
P = predata->P;

pivot = predata->pivot;

/* Solve the block-diagonal system Px = r using LU factors stored
in P and pivot data in pivot, and return the solution in z.
First copy vector r to z. */
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N_VScale(1.0, r, z);

nvmxsub = data->nvmxsub;
zdata = N_VDATA(z);

for (1x = 0; 1x < MXSUB; 1x++) {
for (1y = 0; 1y < MYSUB; 1ly++) {
v = &(zdata[1x*NVARS + ly*nvmxsub]);
ges1(P[1x] [1y], NVARS, pivot[lx][1ly]l, v);
}
}

return(0) ;
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